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Abstract
Recent statements about the impressive capa-
bilities of large language models (LLMs) are
usually supported by evaluating on open-access
benchmarks. Considering the vast size and
wide-ranging sources of LLMs’ training data,
it could explicitly or implicitly include test
data, leading to LLMs being more suscepti-
ble to data contamination. However, due to
the opacity of training data, the black-box ac-
cess of models, and the rapid growth of syn-
thetic training data, detecting and mitigating
data contamination for LLMs faces significant
challenges. In this paper, we propose CDD,
which stands for Contamination Detection via
output Distribution for LLMs. CDD neces-
sitates only the sampled texts to detect data
contamination, by identifying the peakedness
of LLM’s output distribution. To mitigate the
impact of data contamination in evaluation, we
also present TED: Trustworthy Evaluation via
output Distribution, based on the correction of
LLM’s output distribution. To facilitate this
study, we introduce two benchmarks, i.e., DET-
CON and COMIEVAL, for data contamination
detection and contamination mitigation evalua-
tion tasks. Extensive experimental results show
that CDD achieves the average relative im-
provements of 21.8%-30.2% over other contam-
ination detection approaches in terms of Accu-
racy, F1 Score, and AUC metrics, and can effec-
tively detect implicit contamination. TED sub-
stantially mitigates performance improvements
up to 66.9% attributed to data contamination
across various contamination setups. In real-
world applications, we reveal that ChatGPT
exhibits a high potential to suffer from data
contamination on HumanEval benchmark.1

1 Introduction

In recent years, LLMs have revolutionized the
fields of natural language processing (NLP), ar-
tificial intelligence, and software engineering. To

*Corresponding author.
1https://github.com/YihongDong/CDD-TED4LLMs
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Figure 1: An example of data contamination affecting
LLMs’ performance, where CodeLlama is fine-tuned
on HumanEval (as leaked data) + 50K StarCoder data
excluding MBPP (as unleaked homogeneous data).

evaluate LLMs’ capabilities in various downstream
tasks, such as automatic question answering, natu-
ral language reasoning, and code generation, peo-
ple conduct extensive tests for LLMs based on enor-
mous benchmark datasets (Chen et al., 2021; Cobbe
et al., 2021). The results indicate that LLMs exhibit
superior performance on these tasks. While mar-
veling at the powerful capabilities of LLMs, people
usually want to determine whether an LLM’s excel-
lent performance is due to the genuine understand-
ing of tasks to achieve generalization, or merely
because it has seen the test data to form memoriza-
tion, i.e., suffering from data contamination.

Data contamination, also known as data leak-
age, refers to the scenario where the test data has
been included in the model’s training data (Magar
et al., 2022; Dickson, 2023), leading to the model
performing exceptionally well on these leaked test
data. Owing to the vast size and wide-ranging
sources of the pre-trained datasets for LLMs, they
are more susceptible to data contamination, which
can be primarily categorized into two situations:
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1) For existing benchmark datasets, they are more
easily leaked because of massive text quotes, code
reuse, and synthetic data in LLMs’ training data.
2) For upcoming benchmark datasets, newly con-
structed test data may already exist in the continu-
ously evolving training data of LLMs since people
are usually unaware of the specifics of LLMs’ train-
ing data. Consequently, it becomes formidable to
prevent data contamination for LLMs.

Data contamination exerts a profound and dele-
terious impact on LLMs (Zhou et al., 2023; Jacovi
et al., 2023; Roberts et al., 2023). As shown in
Figure 1, with LLMs continuing to learn on con-
taminated data (i.e., both leaked data and other
training data), their performance keeps improving
on leaked data but stagnates and even degrades on
similar data. This example reflect that data con-
tamination can lead to a substantial overestimation
of models’ performance, thus affecting the trust-
worthiness and effectiveness of LLMs in practical
applications. Furthermore, data contamination may
also conceal the potential flaws of models, pre-
senting major obstacles for people to identify and
improve upon LLMs’ shortcomings. Therefore, it
is crucial for LLMs to detect data contamination
and ensure trustworthy evaluation.

Although acknowledged the significance, data
contamination detection and trustworthy evaluation
for LLMs still persist as open and challenging is-
sues (Yang et al., 2023; Huang et al., 2023). The
difficulties of data contamination detection can be
essentially attributed to three factors: 1) Opaque
Training Data. It is usually non-public and com-
prehensive, while continuously evolving for new
LLMs. 2) Black Box Models. The parameters and
output probabilities of LLMs may not be available,
such as ChatGPT and GPT-4 (OpenAI, 2023). 3)
Proliferation of Synthetic Data. It could implicitly
introduce the variants2 of test data to training data.
Further, the evaluation to mitigate the impact of
data contamination has hardly been studied.

In this paper, we overcome the preceding
challenges by proposing CDD: Contamination
Detection via output Distribution for LLMs. CDD
uses the sampled texts to identify the peakedness
of LLM’s output distribution for data contamina-
tion detection. We follow a hypothesis that training
is likely to alter the model’s output distribution,
resulting in a more peaked output distribution for

2These variants may include, but are not limited to, trans-
lations into other languages, additions of explanations or inter-
mediate processes, and provisions of alternate solutions.

Training Data
Normal
Abnormal

Figure 2: The illustration of LLMs’ output distribution.

training data, thereby tending the model towards
specific outputs on these data. On this basis, we
also present TED: Trustworthy Evaluation via out-
put Distribution, which is designed to mitigate the
impact of data contamination in evaluation by cor-
recting LLM’s output distribution.

We construct two new datasets, i.e., DETCON

and COMIEVAL, for data contamination detec-
tion and contamination mitigation evaluation tasks,
respectively. Experimental results demonstrate
that CDD achieves state-of-the-art (SOTA) perfor-
mance and is also suitable for identifying implicit
contamination, i.e., existing the variants of test data
in training data. TED successfully mitigates the
impact of data contamination in evaluation across
various scenarios. Furthermore, we also provide
strong evidence that ChatGPT suffers from data
contamination on HumanEval dataset.

2 Motivation Example

A powerful LLM that transcends memorization
has the capability to generate diverse outputs in
response to a given input. Considering the huge
vocabulary size of LLMs, which encompasses a
good number of tokens with analogous semantics,
the output distribution sampled from LLMs ought
to not exhibit peakedness. However, when LLMs
solely form memorization via training, LLMs are
prone to generate outputs that abnormally resemble
their training data, as shown in Figure 2. From a
statistical perspective, assuming that the average
probability of LLM’s output tokens is 0.95, the
likelihood of sampling two outputs that contain the
same 100 consecutive tokens is about 0.005 < 0.01,
which is an extremely improbable event. Therefore,
if an LLM consistently outputs some identical or
highly similar texts through sampling, it is most
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Figure 3: The output distributions of LLMs as modeled
by edit distance across varying degrees of data contami-
nation (with the same setting as Figure 1).

likely caused by memorization.

Figure 3 displays an example of how the LLM’s
output distribution changes as the degree of data
contamination varies. We model the LLM’s output
distribution by computing the edit distances of sam-
pled texts, referred to as edit distance distribution
(§ 3.1). As shown in Figure 3, in the absence of
data contamination (i.e., occurrence 0), the den-
sity of zero edit distance stands at 0.0035, where
zero edit distance means that sampled texts exactly
match. However, upon the LLM being exposed
to the leaked data even once (i.e., occurrence 1)
during training, the density of zero edit distance
escalates sharply to more than 20 times larger than
the original, showing the peakedness. Therefore,
the impact of data contamination on the LLM’s
output distribution is substantial.

In this paper, to the best of our knowledge, we
are the first to consider from the standpoint of
LLMs’ output distribution to address the challenges
associated with data contamination detection and
contamination mitigation evaluation, employing
only the sampled texts without access to the output
probability and training data.

3 Methodology

In this section, we first establish the edit distance
distribution (§ 3.1), and then on this basis, we de-
sign CDD for data contamination detection (§ 3.2)
and TED for contamination mitigation evaluation
(§ 3.3).

3.1 Edit Distance Distribution
Edit distance (Levenshtein et al., 1966) is a measure
of similarity between two strings, which is defined
as the minimum number of operations required to
transform one string into the other. The operations
typically include insertion, deletion, or substitution
of a single character.

Considering the generation of LLMs is based on
tokens instead of characters, we adopt token-level
edit distance in this paper. Given two strings a and
b, token-level edit distance is calculated as:

ED(a, b) =





Len(a) if Len(b) = 0,

Len(b) if Len(a) = 0,

ED(Tail(a),Tail(b)) if Head(a) = Head(b),

1 + min





ED(Tail(a), b)

ED(a,Tail(b))

ED(Tail(a),Tail(b))

otherwise,

(1)

where Len(a) means the length of tokenized a,
Head(a) means the first token of tokenized a,
Tail(a) means the string consists of all tokens of
tokenized a following Head(a). We use dynamic
programming to speed up calculations and rolling
arrays to reduce space overhead.

Given an LLM, we can model its output distri-
bution by computing the edit distances of sampled
texts S = {s1, s2, ..., sn}, where n is the num-
ber of samples. Specifically, we define the density
function ρ as:

ρ(d) =

n−1∑
i=1

n∑
j=i+1

I(ED(si, sj) = d)

n ∗ (n− 1)/2
, (2)

where d ∈ Z≥0 and I(·) is the indicator function
that outputs 1 if the condition is true, otherwise 0.

3.2 CDD for Data Contamination Detection
Given a test data {x, y} consisting of a prompt x
and the corresponding answer y, we aim to detect
if this data has been trained by the model M.

We sample S from M with the input x to cal-
culate ρ. For data contamination detection, the
calculation of ρ can be simplified as:

ρ′(d) =

n∑
i=1

I(ED(si, y) = d)

n
. (3)

However, ρ′(d) assumes that test data must be ex-
plicitly leaked in its original form {x, y}, and does
not take into account the possible implicit contami-
nation of the variant form, i.e., {x, ŷ}.
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Through observation, we find that the copy per-
centage of model outputs increases as the degree of
data contamination increases, as shown in Figure
1. Therefore, we approximate y by the model’s
output texts and finally choose to replace y with
the model’s greedy search text st=0, which can be
easily achieved by setting temperature t = 0 when
sampling. Thus,

ρ∗(d) =

n∑
i=1

I(ED(si, st=0) = d)

n
. (4)

In this work, we employ ρ∗(d) to measure edit
distance distribution by default.

Further, we define the peakedness of edit dis-
tance distribution as

Peak(M;x) = F (d ≤ α · l) =
α·l∑

d=0

ρ∗(d), (5)

where F is the cumulative distribution function,
α ∈ [0, 1] is a hyper-parameter to control the simi-
larity, and and l is defined as:

l = max({Len(s) | s ∈ S}). (6)

Through identifying the peakedness, CDD can
detect data contamination on test data as:

CDD(M;x) =

{
Leaked if Peak(M;x) > ξ,

Unleaked if Peak(M;x) ≤ ξ,
(7)

where ξ ∈ [0, 1] is hyper-parameter to control the
threshold. The pseudocode of CDD for data con-
tamination detection is shown in Algorithm 1.

Algorithm 1 The pseudocode of CDD

Require: LLM M, the prompt of test data x, and
hyper-parameter α = 0.05, ξ = 0.01.

Ensure: Contamination status cs.
1: Sample S from M with the input x.
2: Model ρ∗(d) via Eq. (4)
3: Compute Peak(M;x) via Eq. (5).
4: Detect cs via Eq (7)
5: return cs.

3.3 TED for Contamination Mitigation
Evaluation

We achieve contamination mitigation evaluation
using TED, which includes two rules to correct the
LLM’s output distribution, i.e., exclude peakedness
and remove duplicates.

1) Exclude Peakedness. We hope to restore the
uncontaminated sampling results by excluding the
peakedness in the LLM’s output distribution, while
excluding the greedy text st=0 which is most likely
to represent the leaked data potentially memorized
by the LLM.

Se = {s | s ∈ S ∧ ED(s, st=0) > τ}, (8)

where τ ∈ [0,+∞) is a hyper-parameter to control
the difference.

2) Remove Duplicates. It aims to remove the du-
plicate sampling results, especially those differing
from st=0, which are also less likely to duplicately
occur in the uncontaminated sampling results.

Sr = {si|si ∈ S ∧ ∀j < i, sj ̸= si}. (9)

In the evaluation phase, an evaluation metric E
using TED to mitigate the impact of data contami-
nation can be defined as:

ETED(M;x) ≡ ETED(S;x) = E(Se ∧ Sr;x),
(10)

The pseudocode of TED for contamination mitiga-
tion evaluation is shown in Algorithm 2.

Algorithm 2 The pseudocode of TED.

Require: LLM M, the prompt of test data x, eval-
uation metric E , and hyper-parameter τ = 2.

Ensure: Evaluation performance ep.
1: Sample S from M with the input x.
2: Exclude peakedness to compute Se via Eq. (8).
3: Remove duplicates to compute Sr via Eq. (9).
4: Obtain ep based on E via Eq. (10).
5: return ep.

4 Experiment

In this section, we first introduce two datasets, DET-
CON and COMIEVAL, tailored for the tasks of data
contamination detection and contamination miti-
gation evaluation, respectively (§ 4.1). We then
evaluate the efficacy of CDD on DETCON dataset
(§ 4.2). Following this, we assess the performance
of TED on COMIEVAL dataset (§ 4.3). Finally, we
demonstrate the application results of both CDD
and TED in real-world scenarios (§ 4.4).

3We rephrase leaked data and each problem in the variant
of leaked data has another correct solution different from the
original solution, where the majority is generated by ChatGPT
and about 10% is generated by ChatGPT-assisted humans.
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Table 1: Detailed statistics of simulating different data contamination scenarios of LLMs.

Domain Leaked Dataset Base LLMs Other Training Data Mixing Ratio Learning Rate Occurrences Contamination Form

Code Generation HumanEval {CodeLlama, CodeGen} StarCoder data
1 : {0, 0.1K, 1K, 10K} {1e-3, 2e-4, 4e-8} [0, 20] {Explicit, Implicit3}

Logical Reasoning GSM8K {Llama2, Bloom} RedPajama data

Table 2: The differences between CDD and other contamination detection approaches, where N-gram and LLM
Decontaminator are designed to detect the contamination of training data rather than models.

Approach Not Need Prob. Not Need Param. Not Need Other LLM Consider Implicit Contamination

N-gram (Brown et al., 2020) " " " %

Embedding similarity " % " %

Perplexity (Li, 2023) % " " %

Min-k% Prob (Shi et al., 2023) % " " %

LLM Decontaminator (Yang et al., 2023) " " % "

CDD " " " "

Table 3: Comparison of CDD and other contamination detection approaches, where † denotes the application of the
approach needs additional conditions as shown in Table 2 and the bold italic indicates the highest value other than
CDD, which is also the baseline of the relative improvement.

Approach
DETCON (Code Generation)

Average
DETCON (Logical Reasoning)

Average
Accuracy F1 Score AUC Accuracy F1 Score AUC

N-gram (char-level) 0.484 0.593 - 0.538 0.564 0.67 - 0.617
N-gram (token-level) 0.541 0.302 - 0.422 0.656 0.498 - 0.577
Embedding similarity† 0.524 0.569 0.571 0.554 0.592 0.645 0.668 0.635
Perplexity† 0.513 0.593 0.491 0.532 0.497 0.664 0.699 0.620
Min-k% Prob† 0.563 0.524 0.565 0.550 0.527 0.677 0.698 0.634
LLM Decontaminator† 0.535 0.578 - 0.556 0.509 0.433 - 0.471
CDD 0.715 0.694 0.761 0.724 (↑ 30.2%) 0.706 0.765 0.846 0.773 (↑ 21.8%)

4.1 Dataset

Considering the absence of datasets for data con-
tamination detection and contamination mitiga-
tion evaluation tasks, we dedicate more than 2100
hours to constructing the DETCON and COMIEVAL

datasets, utilizing two A6000 GPUs (48GB × 2).
We simulate data contamination by training

LLMs using benchmark data. To cover various
scenarios of data contamination, we consider dif-
ferent settings, including two domain benchmarks
leaked on four LLMs, two contamination form (i.e.
explicit and implicit leaked data), using three dif-
ferent learning rates during training, four mixing
ratios of leaked data with other training data, and 21
degrees of contamination (i.e., occurrences). The
detailed statistics can be found in Table 1. Due to
the high cost of large-scale pre-training, we em-
ploy LoRA (Hu et al., 2022) to fine-tune the base
models on these various settings. On this basis, we
construct the DETCON and COMIEVAL datasets.

DETCON contains 2224 data contamination de-
tection tasks, covering two domains (code genera-
tion and logical reasoning) and two contamination

forms (explicit and implicit), which need to detect
whether a specific LLM has contamination on a
particular data. We randomly select the data from
the leaked dataset and the LLM from the settings
in Table 1, where occurrence 0 refers to ‘uncontam-
inated’ and the others denote ‘contaminated’.

COMIEVAL contains 560 contamination mitiga-
tion evaluation tasks, consisting of a randomly se-
lected contaminated model from Table 1 and the
corresponding uncontaminated model, which need
to evaluate the performance of the contaminated
model and try to mitigate the impact of data con-
tamination to approach the performance of the un-
contaminated model.

The detailed statistics and introductions of DET-
CON and COMIEVAL datasets can be found in Ap-
pendix A.

4.2 Data Contamination Detection

Experimental Setup. We compare CDD with
baselines, including 1) N-gram: We employ
widely-used 13-gram for both char-level and token
level; 2) Embedding Similarity: Use the embed-
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Figure 5: The effectiveness of CDD for data contamination detection in explicit and implicit contamination forms.

ding of the base model to compute similarity; 3)
Perplexity: Compute the perplexity of the original
answer given the prompt; 4) Min-k% Prob: Com-
pute the minimum k% probability of the original
answer given the prompt, and 5) LLM Decontami-
nator: Use other LLM to determinate the similarity
and we employ ChatGPT as this LLM. The differ-
ences between CDD and baselines are shown in
Table 2. For hyper-parameters, we set α = 0.05,
ξ = 0.01, the cap of l as 100 for CDD by default,
and baselines follow the settings in their paper.

The Effect of CDD. As presented in Table 3,
compared with other contamination detection ap-
proaches, CDD attains SOTA performance in
both code generation and logic reasoning domains.
CDD exhibits steady improvements across the Ac-
curacy, F1 Score, and AUC metrics, with the aver-
age relative improvement ranging between 21.8%
and 30.2%. Moreover, the advantage of CDD is
that it only requires the sampled texts of LLMs
to detect data contamination, without the need for
additional conditions in Table 2.

We compare CDD with the two best-performing
approaches besides CDD (i.e., Embedding Similar-

ity and LLM Decontaminator) in Table 3, alongside
the most commonly used n-gram in two contami-
nation forms, as shown in Figure 5. In the cases of
explicit contamination, as the degree of contami-
nation increases, the detection effectiveness across
all approaches improves. CDD outperforms the
other approaches at lower contamination degrees,
which are more challenging to detect. In contrast,
in the cases of implicit contamination, CDD alone
maintains robust performance, whereas the other
approaches encounter significant limitations.

We fix the hyper-parameter α and ξ intuitively
for CDD in the experiments. In Figure 4 (a) and
(b), we analyze the influence of α and ξ empirically
on DETCON dataset by changing itself and fixing
another hyper-parameter. The results indicate that
there is still room for further improvements with
the better hyper-parameter setup of α and ξ.

4.3 Contamination Mitigation Evaluation

Experimental Setup. We evaluate the effective-
ness of TED for contamination mitigation in differ-
ent learning rates, base LLMs, mixing ratios, con-
tamination forms, and occurrences on COMIEVAL.
We set the hyper-parameter τ = 2 and use Pass@1
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Figure 6: The effect of our TED on model performance as the degree of data contamination increases under different
settings. The legend displays the settings for specific data leakage scenarios.

(Chen et al., 2021) as the evaluation metric E .

Effect of TED. TED can steadily mitigate the
performance improvements across different set-
tings and occurrences in data contamination scenar-
ios, as shown in Figure 6. Moreover, the advantage
of TED is that the performance influence of TED
on the uncontaminated model (i.e. 0 occurrences)
is small and almost negligible. However, as con-
tamination degrees continue to increase, the perfor-
mance influence of TED becomes apparent in all
of the different settings.

Table 4: Ablation Study of TED, where RD and EP
mean the rules of remove duplicates and exclude peaked-
ness in TED, respectively.

Occurrences
Approach

0 1 7 14 20

Pass@1 0.219 0.257 0.553 0.846 0.930
+ RD 0.212 0.244 0.486 0.740 0.831 (↓ 10.7%)
+ EP 0.212 0.242 0.371 0.335 0.320 (↓ 65.5%)
Pass@1TED 0.209 0.241 0.364 0.321 0.308 (↓ 66.9%)

We analyze the effects of each component in
TED, as shown in Table 4. The main function is
provided by the rule of exclude peakedness, fol-

lowed by the rule of remove duplicates. Both com-
ponents are beneficial to TED and are also effective
when employed alone.

As illustrated in Figure 4 (c), an increase in
the hyperparameter τ for TED leads to a more
pronounced suppression of performance improve-
ments attributable to data contamination. Mean-
while, it also marginally decreases the performance
of the uncontaminated model.

4.4 Real-World Application

Experimental Setup. In real-world applications,
we apply CDD and TED for ChatGPT and con-
struct two new datasets to assist evidence: 1) Code-
Forces2305 comprises 90 of the easiest level pro-
gramming problems collected from the CodeForces
website since May 2023, which is after the most
recent update deadline of ChatGPT’s training data,
i.e., April 2023. 2) HumanEval_R is reconstructed
on HumanEval, which replaces its function sig-
nature, translates its requirements into German,
French, and Chinese, selects different public test
cases from the work (Dong et al., 2023a) to prompt,
and remains the private test cases for testing. To
enhance the detection precision, we set the hyper-
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parameters α to 0 and ξ to a larger value of 0.2 for
CDD. We keep τ at the default value of 2 for TED.

Table 5: Data contamination detection and contami-
nation mitigation evaluation for ChatGPT, where we
call ChatGPT’s API with the fixed version ‘1103’, Avg.
Peak means the average of the peakedness of output dis-
tribution computed via Eq. 5, and CR means the ratio of
contaminated tasks detected by CDD in the benchmark.

Benchmark Pass@1 Avg. Peak CR Pass@1TED

HumanEval 0.7248 0.2326 0.4147 0.5964
HumanEval_R 0.4684 0.0594 0.1097 0.4171
CodeForces2305 0.0790 0.0063 0 0.0785

Data contamination for ChatGPT. As shown
in Table 5, on HumanEval dataset, ChatGPT ex-
hibits a high Avg. Peak and Leak Ratio. Con-
sidering the implementation of more stringent α
and ξ, it is posited that ChatGPT is likely to suffer
from data contamination on HumanEval dataset.
This hypothesis is further evidenced through eval-
uations conducted on HumanEval_R and Code-
Forces2305 datasets. HumanEval_R indicates their
high Avg. Peak and Leak Ratio are not easily at-
tributable to the difficulty of problems. By modify-
ing prompt forms through a process of reconstruc-
tion, all of the performance, Avg. Peak, and Leak
Ratio of ChatGPT are significantly reduced. On
CodeForces2305 dataset, which is unlikely to be
involved in data contamination, ChatGPT’s perfor-
mance was markedly lower than anticipated, with
the Avg. Peak at less than 0.01 and Leak Ratio of
0. Moreover, TED demonstrates significant effec-
tiveness on both the contaminated HumanEval and
HumanEval_R.

5 Related Work

Data contamination detection. The concept of
data contamination for LLMs can be derived from
the context of GPT-3 (Brown et al., 2020). Due
to the vastness of the pre-training corpus of GPT-
3, it inevitably overlapped with some evaluation
benchmarks. Therefore, GPT-3 adopted 13-gram
overlap detection to remove the data in the training
set that conflicts with the test set of benchmarks.

Some work (Pan et al., 2020; Zhou et al., 2023;
Jacovi et al., 2023; Dodge et al., 2021) exposed the
serious consequences of data contamination and
urged attention to this problem. However, most
currently released LLMs did not open their pre-
training corpus, which poses a new challenge for
data contamination detection. Recent work tried

to detect contamination without access to the pre-
training corpus (Oren et al., 2023; Deng et al., 2023;
Golchin et al., 2023). Min-k% Prob (Shi et al.,
2023) calculated the average of the k% smallest
probabilities of generated tokens and considered
it as contaminated if it exceeded a certain thresh-
old. The work (Li, 2023) assumed that data leaked
into the training set tends to exhibit lower perplex-
ity and utilizes perplexity analysis for detection.
However, they often require other model outputs
(e.g. probability) in addition to text, presenting
challenges in detecting closed-source LLMs like
ChatGPT, and they ignore the potential implicit
contamination from variants of test data.

Recent investigations (Huang et al., 2023; Yang
et al., 2023) have suggested that filtering training
data based on n-grams may not effectively address
the issue of data contamination, especially concern-
ing semantically equivalent sentence rephrasing.
To this end, LLM Decontaminator (Yang et al.,
2023) detected the similarity of test data and train-
ing data based on other advanced LLMs.

Our work requires only sampled texts to detect
LLM’s data contamination via output distribution
and considers the potential implicit contamination.

Contamination Mitigation Evaluation. To mit-
igate the impact of data contamination and en-
sure trustworthy evaluations, several approaches
focus on constructing new evaluation benchmarks
(Golchin et al., 2023). The work (Zhu et al., 2023)
employs an LLM to paraphrase the contaminated
dataset for evaluations. However, LLM’s synthetic
data is widely used for training, which already con-
tains lots of paraphrased data (Yang et al., 2023).
The work (Li et al., 2023b) leverages temporal in-
formation to construct a benchmark beginning from
January 2023. However, building a high-quality
benchmark is costly and time-consuming, and un-
fortunately, the training data deadline for ChatGPT
and GPT-4 has been updated from September 2021
to April 2023 and continues to be delayed.

Our work achieves contamination mitigation
evaluation from the standard of LLM’s output dis-
tribution and is orthogonal to the preceding works.

6 Conclusion

In this paper, we have proposed two novel ap-
proaches, namely CDD and TED, to deal with
data contamination detection and contamination
mitigation evaluation for LLMs, considering the
LLM’s output distribution. We construct two corre-
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sponding datasets, i.e., DETCON and COMIEVAL,
for these two tasks. Extensive experimental results
indicate the superiority and versatility of CDD and
TED. Moreover, we also discover that ChatGPT
is likely to suffer from data contamination on Hu-
manEval dataset. We hope to shed light on this
direction and call more attention to data contami-
nation issues.

7 Limitations

Our work has several limitations, which we aim to
address in our future work:

First, the validation of our work is mainly fo-
cused on benchmarks for code generation and logi-
cal reasoning, which are highly representative and
widely adopted. In the future, we will further vali-
date our approaches on other benchmarks.

Second, our approaches require multiple sam-
plings to compute the output distribution, and the
more samplings conducted, the better the effect.
We can use parallel sampling techniques to speed
up sampling, thereby reducing time overhead.

Third, considering the limitation of computa-
tional resources, we employ a popular parameter-
efficient fine-tuning approach, i.e., LoRA, instead
of full-parameter fine-tuning to simulate data con-
tamination for LLMs. In future work, we plan to
attempt full-parameter fine-tuning.

Finally, in constructing our datasets, we assume
that the four base LLMs used do not suffer from
data contamination on the selected benchmarks.
However, in reality, these LLMs may have slight
data contamination. To completely avoid this is-
sue, it might be necessary to retrain an LLM from
scratch on a training set known to be entirely free
of test data. However, undertaking such a process
would be prohibitively costly.
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Table 6: The statistics of DETCON and COMIEVAL datasets, where each text is equipped with the probability.

Dataset Task Nums Inputs (optional) per task Outputs per task

DETCON 1112 / 1112 a prompt, the original answer, 51 sampled texts, and the model parameter ‘contaminated’ / ‘uncontaminated’
COMIEVAL 560 leaked dataset, 51 sampled texts of each leaked data, and model parameters evaluation performance

A Details of Dataset Construction

In this section, we further describes the different data contamination scenarios, as well as how we collect
and process data from these scenarios to construct the dataset.

First, we prepare the data and models:

1. Test Data. We choose the HumanEval (Chen et al., 2021) dataset for code generation and the
GSM8K (Cobbe et al., 2021) dataset for logical reasoning.

2. LLMs. For code generation tasks, we use CodeLlama-7B (Rozière et al., 2023) and CodeGen-6.7B
(Nijkamp et al., 2023); for logical reasoning tasks, we select Llama2-7B (Touvron et al., 2023) and
Bloom-7B (Scao et al., 2022).

3. Training Data. Code generation tasks use the training data from StarCoder (Li et al., 2023a), while
logical reasoning tasks use RedPajama (Computer, 2023).

Next, we construct the dataset DETCON for data contamination detection, starting with the construction
of uncontaminated samples. We directly use the outputs generated by LLMs on the test data, representing
uncontaminated data. Then, we construct contaminated samples by simulating different contamination
scenarios:

1. Explicit and Implicit Contamination. Explicit contamination refers to the direct use of test data for
training, while implicit contamination refers to training with variants of the test data.

2. Proportion in the training data. We use different amounts of training data mixed with test data to
train LLMs. The proportions of the test dataset mixed with training data include 1:0, 1:0.1k, 1:1k,
1:10k.

3. Different learning rates. Considering the effect of learning rate on model training, we chose three
different learning rates: 1e-3, 2e-4, and 4e-8.

4. Degree of data contamination. Training LLMs with contaminated data for more epochs indicates
a higher degree of contamination. Epochs range from 0 to 20, where 0 means no training of LLM,
indicating no contamination, reserved for constructing uncontaminated samples.

By combining these four different scenarios, we can construct a variety of composite data contamination
scenarios. For each piece of test data, we randomly select the results generated by LLMs under one of
the contamination scenarios as the contaminated samples. Following the previous works (Jiang et al.,
2023; Dong et al., 2023b,c; Li et al., 2024), in generating these samples, we also record the outputs of
greedy search with a temperature parameter of 0 (1 sample) and 50 samples obtained by sampling with a
temperature of 0.8.

This construction approach aims to comprehensively cover possible data contamination scenarios,
ensuring we can accurately assess the performance of LLMs in the face of different types and degrees of
data contamination.

Finally, we construct the dataset COMIEVAL for contamination mitigation evaluation. We selected
560 LLMs and their generated outputs from all the constructed contaminated LLMs as the task inputs.
Then, we used the performance of the corresponding uncontaminated LLMs on these two test datasets as
the target output, serving as the evaluation criterion. Table 6 demonstrates the statistics of DETCON and
COMIEVAL, respectively.
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